III	Algebraic and geometric forms, tanggents and normal, blending functions. reparametrization, straight lines, conics, cubic splines, Bezier curves and B-spline curves.	4	15\%
	Plane surface, ruled surface, surface of revolution, tabulated cylinder, bicubic surface, bezier surface, B-spline surfaces and their modeling techmiques.	3	
	Solid models and representation scheme, boundary representation. constructive solid geometry.	3	
	Sweep representation, cell decomposition, spatial occuppancy enumeration, coordinate systems for solid modeding.	4	

4.1 Mathematical Models for Curves and Surfaces

 plane, ryididis saperial cresefa surfice.

A straight line, or simply a line, in Euclidean space is a set of points p that satisfy

$$
\mathbf{p}-\mathbf{p}_{0}=u\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right), u \in(-\infty,+\infty), \quad \mathbf{p}_{0} \neq \mathbf{p}_{1} .
$$

Here p_{0} and p_{1} are arbitrary but distinct points of the line. The equation above contains a parameter u and is called a parrametric equation. As the parameter u takes all possible values from minus infinity to plus infinity, the point p traces the entire line.

The parametric equation of the line can be written in a different format. Algebraic manipulation of the original equation yields

$$
\mathrm{p}=(1-u) \mathrm{p}_{0}+u \mathrm{p}_{1}
$$

This is the fundamental equation of linear interpolation. It shows that

$$
\begin{aligned}
& u=0 \Rightarrow \mathrm{p}=\mathrm{p}_{0} \\
& u=1 \Rightarrow \mathrm{p}=\mathrm{p}_{1}
\end{aligned}
$$

$$
\mathbf{p}-\mathbf{p}_{0}=u\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right), \quad u \in[0,1], \quad \mathbf{p}_{0} \neq \mathbf{p}_{1} .
$$

Letting

$$
\begin{aligned}
& a_{0}=1-u \\
& a_{1}=u
\end{aligned}
$$

the interpolation equation can also be written as

$$
\begin{aligned}
& \mathbf{p}=a_{0} \mathbf{p}_{o}+a_{1} \mathbf{p}_{1} \\
& a_{0}+a_{1}=1
\end{aligned}
$$

Figure 4.1.1.1 - Linear interpolation

$$
\mathbf{p} \leftrightarrow\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \quad \pi \leftrightarrow\left[\begin{array}{l}
a \\
b \\
b
\end{array}\right]
$$

$$
\mathbf{p}_{0} \boldsymbol{n}=-d
$$

the equation of the plane takes the familiara form

$$
a x+b y+c z+d=0 \text {. }
$$

Figure 4.1.1.2 - A plane defined by a point and a normal vector
We defined a line by its parametric equation and a plane by its implicit equation. Lines also have implicit equations and planes parametric equations. For a line we consider two nonparallel planes and write

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1} z+d_{1}=0 \\
& a_{2} x+b_{2} y+c_{2} z+d_{2}=0
\end{aligned}
$$

4.1.2 Curves

Calculus textbooks and most of the literature on cuive modeling define a curve as a set of points p that satisfy a set of parametric equations:

$$
\begin{aligned}
& p_{x}=f_{x}(u) \\
& p_{y}=f_{y}(u) . \\
& p_{z}=f_{z}(u)
\end{aligned}
$$

These can be abbreviated as

$$
\mathrm{p}=\mathrm{f}(u),
$$

set of reals we obtain the complete curve. If we restrict u to an interval, we define a curve segment.

It is important to understand that the same curve (i.e., set of points) can be defined by different parametric equations. The function \mathbf{f} defines not only a curve but also a parameterization for it, and there are many ways of parameterizing the same curve.

The function \mathbf{f} and some of its derivatives are usually required to be continuous. If \mathbf{f} is continuous, the curve is called C^{0} continuous. If both the function and its first derivative are continuous, we say the curve is C^{1} continuous. In general, a curve is C^{i} continuous if f plus its first i derivatives are continuous.

If a curve is parameterized by its arc length s, the derivatives of the generic point of the curve $\mathbf{p}(s)$ are related to the tangent and normal to the curve as follows

$$
\begin{aligned}
& \frac{d \mathbf{p}}{d s}=t \\
& \frac{d t}{d s}=\frac{1}{\rho} n
\end{aligned}
$$

$$
\begin{aligned}
& x=a_{3} l^{3}+c_{2} l^{2}+a_{1} l l+a_{0} \\
& y=b_{3} l^{3}+b_{2} l^{2}+b_{1} 11+b_{0} \\
& z=c_{3} l^{3}+c_{2} l^{2}+c_{11} u+c_{0}
\end{aligned}
$$

If we interpiret the coeficicients as the coordinates of points

$$
\boldsymbol{p}_{3} \leftrightarrow\left[\begin{array}{l}
a_{3} \\
b_{3} \\
c_{3}
\end{array}\right], \boldsymbol{p}_{2} \leftrightarrow\left[\begin{array}{l}
a_{2} \\
b_{2} \\
c_{2}
\end{array}\right], \boldsymbol{p}_{1} \leftrightarrow\left[\begin{array}{l}
a_{1} \\
b_{1} \\
c_{1}
\end{array}\right], \boldsymbol{p}_{0} \leftrightarrow\left[\begin{array}{l}
a_{0} \\
b_{0} \\
c_{0}
\end{array}\right]
$$

$\mathbf{p}=\mathbf{p}_{3} u^{3}+\mathbf{p}_{2} u^{2}+\mathbf{p}_{1} u+\mathbf{p}_{0}$,
which shows flat the generic point of a parametic polynomial curve can be exppessed as a limear combination of other points, ussally y called control points.

The parametric definition of a curve has its limitationss. For example, space:-illing "curves" can be definied by continuluols f functionss. Theses "curres" contradict our intitition of a curve as a 1.D enityy, because they actually coriespond to 2.D of 3.D regions of space. In addition, parametric cuires can self:intersect. If self-intersections are undesiridel, we can model a curve by a different mathematical enity called a manaifold.

A closed n-mnarifold is a set that is locally just ilie an Enclidean space. For example, each point in a closed 1 -manififd hasa small interval around it ithat can be elastically deformed into an interval of the real line. An elastic deformation, without cutinug or giveing is called in topology a homeonlorophisml. Two sets are called topologically equllivalentit if they are related by a homeomoonhisism. Topology, like Eudidean geometiy, is the study of properties of objects that remain invariant under certain transfommations, For Euclideran geomentry the relerant transformantions wree the isometriese, wherears for topology they are the homeomonophisms. The top thiree 1.D objects of Figure 4.1 .21 are homeomomorphic, and so are the three bottom objects. Hoverere, top objects are not homeomomopphic to bottom ones, becalse a top object caninot be elastically deformed into a botom one without glueing its endponiths.

Figure 4.1.2.1 - Compact, connected 1-manifolds

$$
\begin{aligned}
& f_{1}(x, y, z)=0 \\
& f_{2}(x, y, z)=0
\end{aligned}
$$

This is a generalization of the implicit equation of a straight line, discussed in the previous section. The most interesting class of curves defined implicitly arises when the functions f are algebraic, i.e., they are polynomials in the spatial variables x, y, z.

Figure 4.1.2.3 - A circle defined implicitly

$$
\begin{aligned}
& x=f_{x}(u, v) \\
& y=f_{y}(u, v) . \\
& z=f_{z}(u, v)
\end{aligned}
$$

Now two parameters are needed, because surfaces are intrinsically two dimensional. These equations may be abbreviated as

$$
\mathrm{p}=\mathrm{f}(u, v) .
$$

At each point of a smooth surface there are infinititly many lines tangent to the surface. These lines define the tangent plane at the point. The tangent plane is perpendicular to the normal to the surface.

If we let

$$
\begin{aligned}
& v=g_{u}(t) \\
& v=g_{v}(t)
\end{aligned}
$$

and substitute in the parametric equation of a surface, we obtain

$$
\mathrm{p}=\mathrm{f}\left[g_{u n}(t), g_{v}(t)\right]=\mathrm{h}(t) .
$$

derivatives of fle h functions. Therefore, the tangenit vector to a constant-v curve is $\frac{\partial p}{\partial u}$, and the tangenent to a constantrl|l curve is $\frac{\partial p}{\partial y}$. The nommal to the surfice mulst be perpendiculuar to both of these tangeants, and therefore (assumingg the two vectors are not paralle) dhe unit nomanal is ivien by

$$
\left.n=\frac{\frac{\partial p}{\partial u} \times \frac{\partial p}{\partial v}}{\left\lvert\, \frac{\partial p}{\partial v}\right.} \frac{\partial p}{\partial v} \cdot \frac{1}{\partial v} \right\rvert\,
$$

Figure 4.1.3.1 shows that the surface of a solid cube is an example of a piecewise-planar, or polyhedral, closed 2-manifold. It is a collection of polygonal faces such that the neighborhoods of vertices, or of points in the interior of an edge, or in the interior of a face, all can be deformed elastically so as to become disks.

Figure 4.1.3.1 - The surface of a solid cube is a closed 2-manifold

Figure 4.1.3.2 - The boundaries of two cubes glued at an edge or at a vertex are not 2-manifolds

A plane is the simplest example of an algebraic surface, and is defined by a linear implicit equation. Equations of degree higher than one correspond to curved surfaces. For example, a sphere of radius R, centered at the origin, is defined by

$$
x^{2}+y^{2}+z^{2}-R^{2}=0,
$$

and a cylinder of radius R and axis coincident with the z coordinate axis is defined by

$$
x^{2}+y^{2}-R^{2}=0 .
$$

The normal to a surface $f(x, y, z)=0$ is parallel to its gradient vector, defined as

$$
\nabla f \leftrightarrow\left[\begin{array}{l}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y} \\
\frac{\partial f}{\partial z}
\end{array}\right]
$$

Parametric polynomial or rational surfaces can be implicitized, but the resulting algebraic varieties typically have much higher degrees.
where the prime denotes the derivative. The geometric meaning of these constraints is shown in Figure 4.2.1.1.

Figure 4.2.1.1-A quadratic polynomial and its three defining points.

The derivative of f is

$$
f^{\prime}(u)=\left[\begin{array}{lll}
0 & 1 & 2 u
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right]
$$

$$
\begin{aligned}
& f(0)=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right]=b_{0} \\
& f(0)+\frac{1}{2} f^{\prime}(0)=\left[\begin{array}{lll}
1 & \frac{1}{2} & 0
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right]=b_{1} \\
& f(1)=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right]=b_{2}
\end{aligned}
$$

These three equations can be written together in matrix form as

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 / 2 & 0 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2}
\end{array}\right] .
$$

Modeling Complex Shapes

- We want to build models of very complicated objects
- Complexity is achieved using simple pieces
- polygons,
- parametric curves and surfaces, or
- implicit curves and surfaces
- This lecture: parametric curves

What Do We Need From Curves in Computer Graphics?

- Local control of shape (so that easy to build and modify)
- Stability
- Smoothness and continuity
- Ability to evaluate derivatives
- Ease of rendering

Curve Representations

- Explicit: $\mathrm{y}=\mathrm{f}(\mathrm{x}) \quad y=x^{2} \quad y=m x+b$
- Must be a function (single-valued)
- Big limitation-vertical lines?
- Parametric: $(\mathrm{x}, \mathrm{y})=(\mathrm{f}(\mathrm{u}), \mathrm{g}(\mathrm{u}))$
+ Easy to specify, modify, control
- Extra "hidden" variable u , the parameter

$$
(x, y)=(\cos u, \sin u)
$$

- Implicit: $f(x, y)=0$

+y can be a multiple valued function of x
- Hard to specify, modify, control

$$
x^{2}+y^{2}-r^{2}=0
$$

Parameterization of a Curve

- Parameterization of a curve: how a change in u moves you along a given curve in xyz space.
- Parameterization is not unique. It can be slow, fast, with continuous / discontinuous speed, clockwise (CW) or CCW...

parameterization

Polynomial Interpolation

- An n-th degree polynomial fits a curve to $\mathrm{n}+1$ points
- called Lagrange Interpolation
- result is a curve that is too wiggly, change to any control point affects entire curve (non-local)
- this method is poor
- We usually want the curve to be as smooth as possible

source: Wikipedia
Lagrange interpolation, degree= 15
- minimize the wiggles
- high-degree polynomials are bad

Splines: Piecewise Polynomials

- A spline is a piecewise polynomial: Curve is broken into consecutive segments, each of which is a low-degree polynomial interpolating (passing through) the control points
- Cubic piecewise polynomials are the most common:
- They are the lowest order polynomials that

a spline

1. interpolate two points and
2. allow the gradient at each point to be defined (C^{1} continuity is possible).

- Piecewise definition gives local control.
- Higher or lower degrees are possible, of course.

Piecewise Polynomials

- Spline: many polynomials pieced together
- Want to make sure they fit together nicely

Continuous in position

Continuous in position and tangent vector

Continuous in position, tangent, and curvature

Splines

- Types of splines:
- Hermite Splines
- Bezier Splines
- Catmull-Rom Splines
- Natural Cubic Splines
- B-Splines
- NURBS

$\bullet \mathbf{p}_{2}$
- Splines can be used to model both curves and surfaces

Cubic Curves in 3D

- Cubic polynomial:
$-p(u)=a u^{3}+b u^{2}+c u+d=\left[\begin{array}{lll}u^{3} & u^{2} & u\end{array} 1\right]\left[\begin{array}{lll}a & b & c\end{array}\right]^{\top}$
- a,b,c,d are 3-vectors, u is a scalar
- Three cubic polynomials, one for each coordinate:
$-x(u)=a_{x} u^{3}+b_{x} u^{2}+c_{x} u+d_{x}$
$-y(u)=a_{y} u^{3}+b_{y} u^{2}+c_{y} u+d_{y}$
$-z(u)=a_{z} u^{3}+b_{z} u^{2}+c_{z} u+d_{z}$
- In matrix notation:

$$
\left[\begin{array}{lll}
x(u) & y(u) & z(u)
\end{array}\right]=\left[\begin{array}{llll}
u^{3} & u^{2} & u & 1
\end{array}\right]\left[\begin{array}{lll}
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z} \\
c_{x} & c_{y} & c_{z} \\
d_{x} & d_{y} & d_{z}
\end{array}\right]
$$

- Or simply:

$$
p=\left[u^{3} u^{2} u 1\right] A
$$

Cubic Hermite Splines

Hermite Specification

We want a way to specify the end points and the slope at the end points!

Deriving Hermite Splines

- Four constraints: value and slope (in 3-D, position and tangent vector) at beginning and end of interval $[0,1]$:

$$
\begin{aligned}
& p(0)=p_{1}=\left(x_{1}, y_{1}, z_{1}\right) \\
& p(1)=p_{2}=\left(x_{2}, y_{2}, z_{2}\right) \\
& p^{\prime}(0)=\bar{p}_{1}=\left(\bar{x}_{1}, \bar{y}_{1}, \bar{z}_{1}\right) \\
& \left.p^{\prime}(1)=\bar{p}_{2}=\overline{\left(x_{2}\right.}, \bar{y}_{2}, \bar{z}_{2}\right) .
\end{aligned}
$$

- Assume cubic form: $p(u)=a u^{3}+b u^{2}+c u+d$
- Four unknowns: a, b, c, d

Deriving Hermite Splines

- Assume cubic form: $p(u)=a u^{3}+b u^{2}+c u+d$

$$
\begin{aligned}
& p_{1}=p(0)=d \\
& p_{2}=p(1)=a+b+c+d \\
& \overline{p_{1}}=p^{\prime}(0)=c \\
& \overline{p_{2}}=p^{\prime}(1)=3 a+2 b+c
\end{aligned}
$$

- Linear system: 12 equations for 12 unknowns (however, can be simplified to 4 equations for 4 unknowns)
- Unknowns: a, b, c, d (each of a, b, c, d is a 3 -vector)

Deriving Hermite Splines

$$
\begin{aligned}
d & =p_{1} \\
a+b+c+d & =p_{2} \\
c & =\overline{p_{1}} \\
3 a+2 b+c & =\bar{p}_{2}
\end{aligned}
$$

$$
c=\overline{p_{1}} \quad \text { Rewrite this } 12 \times 12 \text { system }
$$ as a 4×4 system:

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z} \\
c_{x} & c_{y} & c_{z} \\
d_{x} & d_{y} & d_{z}
\end{array}\right]=\left[\begin{array}{lll}
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2} \\
\bar{x}_{1} & \bar{y}_{1} & \bar{z}_{1} \\
\bar{x}_{2} & \bar{y}_{2} & \bar{z}_{2}
\end{array}\right]
$$

The Cubic Hermite Spline Equation

- After inverting the 4×4 matrix, we obtain:

- This form is typical for splines
- basis matrix and meaning of control matrix change with the spline type

Four Basis Functions for Hermite Splines

Every cubic Hermite spline is a linear combination (blend) of these 4 functions.

Piecing together Hermite Splines

It's easy to make a multi-segment Hermite spline:

- each segment is specified by a cubic Hermite curve
- just specify the position and tangent at each "joint" (called knot)
- the pieces fit together with matched positions and first derivatives
- gives C1 continuity

Hermite Splines in Adobe Illustrator

Bezier Splines

- Variant of the Hermite spline
- Instead of endpoints and tangents, four control points
- points P1 and P4 are on the curve
- points P2 and P3 are off the curve
- $p(0)=P 1, p(1)=P 4$,
- $p^{\prime}(0)=3(P 2-P 1), p^{\prime}(1)=3(P 4-P 3)$
- Basis matrix is derived from the Hermite basis (or from scratch)
- Convex Hull property: curve contained within the convex hull of control points

- Scale factor " 3 " is chosen to make "velocity" approximately constant

The Bezier Spline Matrix

$$
\begin{aligned}
& {\left[\begin{array}{lll}
x & y & z
\end{array}\right]=\left[\begin{array}{lll}
u^{3} & u^{2} & u
\end{array} 1\right]\left[\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
-3 & 3 & 0 & 0 \\
0 & 0 & -3 & 3
\end{array}\right]\left[\begin{array}{lll}
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2} \\
x_{3} & y_{3} & z_{3} \\
x_{4} & y_{4} & z_{4}
\end{array}\right]} \\
& \text { Hermite basis Bezier to Hermite Bezier } \\
& =\left[\begin{array}{lllll}
u^{3} & u^{2} & u & 1
\end{array}\right]\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2} \\
x_{3} & y_{3} & z_{3} \\
x_{4} & y_{4} & z_{4}
\end{array}\right] \\
& \text { Bezier basis } \\
& \text { Bezier } \\
& \text { control matrix }
\end{aligned}
$$

Bezier Blending Functions

$$
p(t)=\left[\begin{array}{c}
(1-t)^{3} \\
3 t(1-t)^{2} \\
3 t^{2}(1-t) \\
t^{3}
\end{array}\right]^{\mathrm{T}}\left[\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3} \\
p_{4}
\end{array}\right]
$$

Also known as the order 4, degree 3
Bernstein polynomials
Nonnegative, sum to 1
The entire curve lies inside the
polyhedron bounded by the control points

DeCasteljau Construction

Efficient algorithm to evaluate Bezier splines.
Similar to Horner rule for polynomials.
Can be extended to interpolations of 3D rotations.

Catmull-Rom Splines

- Roller-coaster (next programming assignment)
- With Hermite splines, the designer must arrange for consecutive tangents to be collinear, to get C^{1} continuity. Similar for Bezier. This gets tedious.
- Catmull-Rom: an interpolating cubic spline with built-in C^{1} continuity.
- Compared to Hermite/Bezier: fewer control points required, but less freedom.

Constructing the Catmull-Rom Spline

Suppose we are given n control points in 3-D: $p_{1}, p_{2}, \ldots, p_{n}$.
For a Catmull-Rom spline, we set the tangent at p_{i} to $s^{*}\left(p_{i+1}-p_{i-1}\right)$ for $i=2, \ldots, n-1$, for some s (often $s=0.5$)
s is tension parameter. determines the magnitude (but not direction!) of the tangent vector at point p_{i}

What about endpoint tangents? Use extra control points p_{0}, p_{n+1}.

Now we have positions and tangents at each knot. This is a Hermite specification. Now, just use Hermite formulas to derive the spline.

Note: curve between p_{i} and p_{i+1} is completely determined by $p_{i-1}, p_{i}, p_{i+1}, p_{i+2}$.

Catmull-Rom Spline Matrix

$$
\begin{array}{lll}
{\left[\begin{array}{lll}
x & y & z
\end{array}\right]=\left[\begin{array}{llll}
u^{3} & u^{2} & u & 1
\end{array}\right]} & {\left[\begin{array}{cccc}
-s & 2-s & s-2 & s \\
2 s & s-3 & 3-2 s & -s \\
-s & 0 & s & 0 \\
0 & 1 & 0 & 0
\end{array}\right]} \\
\text { basis } \left.\quad \begin{array}{lll}
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2} \\
x_{3} & y_{3} & z_{3} \\
x_{4} & y_{4} & z_{4}
\end{array}\right] \\
\text { control matrix }
\end{array}
$$

- Derived in way similar to Hermite and Bezier
- Parameter s is typically set to $s=1 / 2$.

Splines with More Continuity?

- So far, only C^{1} continuity.
- How could we get C^{2} continuity at control points?
- Possible answers:
- Use higher degree polynomials degree 4 = quartic, degree $5=$ quintic,.. but these get computationally expensive, and sometimes wiggly
- Give up local control \rightarrow natural cubic splines

A change to any control point affects the entire curve

- Give up interpolation \rightarrow cubic B-splines

Curve goes near, but not through, the control points

Comparison of Basic Cubic Splines

Type Local Control Continuity Interpolation

Hermite	YES	C1	YES
Bezier	YES	C1	YES
Catmull-Rom	YES	C1	YES
Natural	NO	C2	YES
B-Splines	YES	C2	NO

Summary:
Cannot get C2, interpolation and local control with cubics

Natural Cubic Splines

- If you want 2 nd derivatives at joints to match up, the resulting curves are called natural cubic splines
- It' s a simple computation to solve for the cubics' coefficients. (See Numerical Recipes in C book for code.)
- Finding all the right weights is a global calculation (solve tridiagonal linear system)

B-Splines

- Give up interpolation
- the curve passes near the control points
- best generated with interactive placement (because it's hard to guess where the curve will go)
- Curve obeys the convex hull property
- C2 continuity and local control are good
 compensation for loss of interpolation

B-Spline Basis

- We always need 3 more control points than the number of spline segments

$$
\begin{aligned}
& M_{B s}= \frac{1}{6}\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 0 & 3 & 0 \\
1 & 4 & 1 & 0
\end{array}\right] \\
& G_{B s i}=\left[\begin{array}{c}
P_{i-3} \\
P_{i-2} \\
P_{i-1} \\
P_{i}
\end{array}\right]
\end{aligned}
$$

Other Common Types of Splines

- Non-uniform Splines
- Non-Uniform Rational Cubic curves (NURBS)
- NURBS are very popular and used in many commercial packages

How to Draw Spline Curves

- Basis matrix equation allows same code to draw any spline type
- Method 1: brute force
- Calculate the coefficients
- For each cubic segment, vary u from 0 to 1 (fixed step size)
- Plug in u value, matrix multiply to compute position on curve
- Draw line segment from last position to current position
- What' s wrong with this approach?
- Draws in even steps of u
- Even steps of u does not mean even steps of x
- Line length will vary over the curve
- Want to bound line length
" too long: curve looks jagged
" too short: curve is slow to draw

Drawing Splines, 2

- Method 2: recursive subdivision - vary step size to draw short lines

```
Subdivide(u0,u1,maxlinelength)
    umid = (u0 + u1)/2
    x0 = F(u0)
    x1 = F(u1)
    if |x1 - x0| > maxlinelength
        Subdivide(u0,umid,maxlinelength)
        Subdivide(umid,ul,maxlinelength)
    else drawline(x0,x1)
```

- Variant on Method 2 - subdivide based on curvature
- replace condition in "if" statement with straightness criterion
- draws fewer lines in flatter regions of the curve

Continuity at Join Points (from Lecture 2)

- Discontinuous: physical separation
- Parametric Continuity

- Positional (C^{0}): no physical separation
- $C^{1}: C^{0}$ and matching first derivatives
- $C^{2}: C^{1}$ and matching second derivatives

- Geometric Continuity
- Positional $\left(G^{0}\right)=C^{0}$
- Tangential $\left(G^{1}\right): G^{0}$ and tangents are proportional, point in same direction, but magnitudes may differ
- Curvature $\left(G^{2}\right): G^{1}$ and tangent lengths are the same and rate of length change

Figure 9.15 Change of
magnitude in G^{1} continuity. is the same

Continuity at Join Points

- Hermite curves provide C^{1} continuity at curve segment join points.
- matching parametric $1^{\text {st }}$ derivatives
- Bezier curves provide C^{0} continuity at curve segment join points.
- Can provide G^{1} continuity given collinearity of some control points (see next slide)
- Cubic B-splines can provide C^{2} continuity at curve segment join points.
- matching parametric $2^{\text {nd }}$ derivatives

Composite Bezier Curves

Joining adjacent curve segments is an alternative to degree elevation.

Collinearity of cubic Bezier control points produces G^{1} continuity at join point:

Figure 4.16 Composite Bézier Curves.
Evaluate at $u=0$ and $u=1$ to show tangents related to first and last control polygon line segment.

$$
\mathbf{p}^{u}(0)=3\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) \quad \mathbf{p}^{u}(1)=3\left(\mathbf{p}_{3}-\mathbf{p}_{2}\right)
$$

For G^{2} continuity at join point in cubic case, 5 vertices must be coplanar.
(this needs further explanation - see later slide)

Composite Bezier Surface

- Bezier surface patches can provide G^{1} continuity at patch boundary curves.
- For common boundary curve defined by control points \mathbf{p}_{14}, $\mathbf{p}_{24}, \mathbf{p}_{34}, \mathbf{p}_{44}$, need collinearity of: $\left\{\mathbf{p}_{i, 3}, \mathbf{p}_{i, 4}, \mathbf{p}_{i, 5}\right\}, i \in[1: 4]$
- Two adjacent patches are C^{r} across their common boundary iff all rows of control net vertices are interpretable as polygons of C^{r} piecewise

Figure 8.4 G^{1} continuity across two Bézier patches. Bezier curves.
-Cubic B-splines can provide C^{2} continuity at surface patch boundary curves.

Continuity within a (Single) Curve Segment

- Parametric C^{k} Continuity:
- Refers to the parametric curve representation and parametric derivatives
- Smoothness of motion along the parametric curve
- "A curve $P(t)$ has k th-order parametric continuity everywhere in the t-interval $[a, b]$ if all derivatives of the curve, up to the k th, exist and are continuous at all points inside $[a, b]$."
- A curve with continuous parametric velocity and acceleration has $2^{\text {nd }}$-order parametric continuity.

$$
x(\theta)=K e^{b \theta} \cos \theta \quad y(\theta)=K e^{b \theta} \sin \theta
$$

apply product rule

$$
\begin{aligned}
& x^{\prime}(\theta)=\left(K e^{b \theta}\right)(-\sin \theta)+(\cos \theta)\left(K e^{b \theta}\right)\left(b e^{b \theta}\right) \\
& y^{\prime}(\theta)=\left(K e^{b \theta}\right)(\cos \theta)+(\sin \theta)\left(K e^{b \theta}\right)\left(b e^{b \theta}\right)
\end{aligned}
$$

$1^{\text {st }}$ derivatives of parametric expression are continuous, so spiral has $1^{\text {st_order }}\left(C^{1}\right)$ parametric continuity.

FIGURE 10.5 A logarithmic spiral and chambered nautilus.

Example

source: Hill, Ch 10

Continuity within a (Single) Curve Segment (continued)

- Geometric \boldsymbol{G}^{k} Continuity in interval $[\boldsymbol{a}, \boldsymbol{b}]$ (assume P is curve):
- "Geometric continuity requires that various derivative vectors have a continuous direction even though they might have discontinuity in speed."
$-G^{0}=C^{0}$
$-G^{1}: P^{\prime}(c-)=k P^{\prime}(c+)$ for some constant k for every c in $[a, b]$.
- Velocity vector may jump in size, but its direction is continuous.
$-G^{2}: P^{\prime}(c-)=k P^{\prime}(c+)$ for some constant k and $P^{\prime}(c-)=m$ $P^{\prime \prime}(c+)$ for some constants k and m for every c in $[a, b]$.
- Both $1^{\text {st }}$ and $2^{\text {nd }}$ derivative directions are continuous.

Note that, for these definitions, G^{k} continuity implies G^{i} continuity for $i<k$.
These definitions suffice for that textbook's treatment, but there is more to the story...

Reparameterization Relationship

- Curve has G^{r} continuity if an arc-length reparameterization exists after which it has C^{r} continuity. source: Farin, Ch 10
- "Two curve segments are G^{k} geometric continuous at the joining point if and only if there exist two parameterizations, one for each curve segment, such that all i th derivatives, $i \leq k$, computed with these new parameterizations agree at the joining point." source:cs.mtu.edu

Additional Perspective

- "Parametric continuity of order n implies geometric continuity of order n, but not vice-versa."

Continuity at Join Point

Parametric Continuity

- Defined using parametric differential properties of curve or surface
- C^{k} more restrictive than G^{k}

Figure 3.27 Conditions required for $\mathbf{G}^{\mathbf{1}}$ continuity.

Geometric Continuity

- Defined using intrinsic differential properties of curve or surface (e.g. unit tangent vector, curvature), independent of parameterization.
- G^{1} : common tangent line
- G^{2} : same curvature, requiring conditions from Hill (Ch 10) \& (see differential geometry slides)
- Osculating planes coincide or
- Binormals are collinear.

Parametric Cross-Plot

Figure 6.4 Cross plots: a two-dimensional Bézier curve together with its two coordinate functions.
For Farin's discussion of C^{1} continuity at join point, cross-plot notion is useful.

Composite Cubic Bezier Curves (continued)

Figure 5.13 Composite curves: a C^{1} example.

Parametric C^{1} continuity, with parametric domains considered, requires (for x and y components):

$$
\begin{equation*}
\frac{3}{(b-a)}\left[b_{3}-b_{2}\right]=\frac{3}{(c-b)}\left[b_{4}-b_{3}\right] \tag{5.30}
\end{equation*}
$$

Composite Bezier Curves

For G^{2} continuity at join point in cubic case, 5 vertices

$$
\begin{gathered}
\mathbf{p}_{m-2}, \mathbf{p}_{m-1}, \mathbf{p}_{m}=\mathbf{q}_{0}, \mathbf{q}_{1}, \mathbf{q}_{2} \\
\text { must be coplanar. } \\
\text { (follow-up from prior slide) }
\end{gathered}
$$

Achieving this might require adding control points (degree elevation).

$$
\kappa_{0}=\frac{2\left|\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) \times\left(\mathbf{p}_{2}-\mathbf{p}_{1}\right)\right|}{3\left|\mathbf{p}_{1}-\mathbf{p}_{0}\right|^{3}} \quad \kappa_{1}=\frac{2\left|\left(\mathbf{p}_{2}-\mathbf{p}_{1}\right) \times\left(\mathbf{p}_{3}-\mathbf{p}_{2}\right)\right|}{3\left|\mathbf{p}_{3}-\mathbf{p}_{2}\right|^{3}}
$$

consistent with: $\kappa_{i}=\frac{\left|\mathbf{p}_{i}^{u} \times \mathbf{p}_{i}^{u u}\right|}{\left|\mathbf{p}_{i}^{u}\right|^{3}}$

C^{2} Continuity at Curve Join Point

- "Full" C^{2} continuity at join point requires:
- Same radius of curvature*
- Same osculating plane*
- These conditions hold for curves $\mathbf{p}(u)$ and $\mathbf{r}(u)$ if:

$$
\begin{aligned}
& \mathbf{p}_{i}=\mathbf{r}_{i} \\
& \mathbf{p}_{i}^{u}=\mathbf{r}_{i}^{u} \\
& \mathbf{p}_{i}^{u u}=\mathbf{r}_{i}^{u u}
\end{aligned}
$$

Piecewise Cubic B-Spline Curve Smoothness at Joint

The effects of multipli-coincident control points and multiple knot values on the continuity at segment joints are worth some further discussion. Here is a summary of the continuity conditions:

1. Control point multiplicity $=1: C^{2}$ and G^{2}
\longleftarrow familiar situation
2. Control point multiplicity $=2: C^{2}$ and G^{1}. with knots restricted to a re- \longleftarrow looks incorrect duced convex hull.
3. Control point multiplicity $=3: C^{2}$ and G^{0}. The curve interpolates the \longleftarrow looks incorrect triple control point, and the segments at each side of the joint are straight lines.
4. Control point multiplicity $=4: G^{2}$ and G^{0}. The curve segments on both \longleftarrow looks incorrect sides of the joint are straight lines and interpolate the control points on both sides.
5. Knot multiplicity $=1: C^{2}$ and $G^{2} \longleftarrow$ familiar situation
6. Knot multiplicity $=2: C^{1}$ and G^{1}, with knots restricted to a reduced con- \longleftarrow curvature discontinuity vex hull.
7. Knot multiplicity $=3: C^{0}$ and G^{0}. The curve interpolates the control point. Curve segment shapes at the joint are free and not constrained to straight lines.
8. Knot multiplicity $=4$: The curve is discontinuous, ending on one control point and resuming at the next. The shapes of the curve segments adjacent to the discontinuity are unconstrained.

Control Point Multiplicity Effect on Uniform Cubic B-Spline Joint

One control point multiplicity $=4$
One curve segment degenerates into a single point. Other curve segment is a straight line. First derivatives at join point are equal but vanish. Second derivatives at join point are equal but vanish.

$$
\begin{gathered}
\mathbf{p}^{u}(u)=\frac{1}{2}\left(-u^{2}+2 u-1\right) \mathbf{p}_{0}+\frac{1}{2}\left(3 u^{2}-4 u\right) \mathbf{p}_{1}+\frac{1}{2}\left(-3 u^{2}+2 u+1\right) \mathbf{p}_{2}+\frac{1}{2} u^{2} \mathbf{p}_{3} \\
\mathbf{p}^{u u}(u)=(-u+1) \mathbf{p}_{0}+(3 u-2) \mathbf{p}_{1}+(-3 u+1) \mathbf{p}_{2}+u \mathbf{p}_{3}
\end{gathered}
$$

Knot Multiplicity Effect on Nonuniform B-Spline

- If a knot has multiplicity r, then the Bspline curve of degree n has smoothness C^{n-r} at that knot.

A Few Differential Geometry Topics Related to Continuity

Local Curve Topics

- Principal Vectors
- Tangent
- Normal
- Binormal
- Osculating Plane and Circle
- Frenet Frame
- Curvature
- Torsion
- Revisiting the Definition of Geometric Continuity

Intrinsic Definition (adapted from earlier lecture)

- No reliance on external frame of reference
- Requires 2 equations as functions of arc 1ength* s : 1) $\frac{1}{\rho}=f(s)$

2) Torsion: $\tau=g(s)$

Torsion (in 3D) measures how much curve deviates from a plane curve.

- For plane curves, alternatively:

$$
\frac{1}{\rho}=\frac{d \theta}{d s}
$$

Figure 2.1 Intrinsic definition of a curve.

Treated in more detail in Chapter 12 of Mortenson and Chapter 10 of Farin.

Calculating Arc Length

- Approximation: For parametric interval u_{1} to u_{2}, subdivide curve segment into n equal pieces.

$$
\begin{gathered}
L=\sum_{i=1}^{n} l_{i} \quad \text { where } \quad l_{i}=\sqrt{\left(\mathbf{p}_{i}-\mathbf{p}_{i-1}\right) \bullet\left(\mathbf{p}_{i}-\mathbf{p}_{i-1}\right)} \\
\text { using } \quad \mathbf{p} \bullet \mathbf{p}=|\mathbf{p}|^{2} \\
L=\int_{u_{1}}^{u_{2}} \sqrt{\mathbf{p}^{u} \bullet \mathbf{p}^{u}} d u \quad \text { is more accurate. }
\end{gathered}
$$

Tangent

Figure 12.1 Tangent vector and line.
unit tangent vector: $\quad \mathbf{t}_{i}=\frac{\mathbf{p}_{i}^{u}}{\left|\mathbf{p}_{i}^{u}\right|}$

Normal Plane

- Plane through \mathbf{p}_{i} perpendicular to \mathbf{t}_{i}

Figure 12.2 Normal plane.

$$
x_{i}^{u} x+y_{i}^{u} y+z_{i}^{u} z-\left(x_{i} x_{i}^{u}+y_{i} y_{i}^{u}+z_{i} z_{i}^{u}\right)=0
$$

Principal Normal Vector and Line

Moving slightly along curve in neighborhood of \mathbf{p}_{i} causes tangent vector to move in direction specified by: $\mathbf{p}_{i}^{u u}$

(b)

Principal normal vector is on intersection of normal plane with (osculating) plane shown in (a).

Binormal vector

$$
\mathbf{b}_{i}=\mathbf{t}_{i} \times \mathbf{n}_{i}
$$

lies in normal plane.

Figure 12.3 Principal normal vector and line.

Use dot product to find projection of $\mathbf{p}_{i}^{u u}$ onto \mathbf{p}_{i}^{u}

Osculating Plane

Limiting position of plane defined by \mathbf{p}_{i} and two neighboring points \mathbf{p}_{j} and \mathbf{p}_{h} on the curve as these neighboring points independently approach \mathbf{p}_{i}.

Note: $\mathbf{p}_{i}, \mathbf{p}_{j}$ and \mathbf{p}_{h} cannot be collinear.

$$
\left|\begin{array}{ccc}
x-x_{i} & x_{i}^{u} & x_{i}^{u u} \\
y-y_{i} & y_{i}^{u} & y_{i}^{u u} \\
z-z_{i} & z_{i}^{u} & z_{i}^{u u}
\end{array}\right|=0
$$

Frenet Frame

Rectifying plane at \mathbf{p}_{i} is the plane through \mathbf{p}_{i} and perpendicular to the principal normal \mathbf{n}_{i} :
$\left(\mathbf{q}-\mathbf{p}_{i}\right) \bullet \mathbf{n}_{i}=0$

Figure 12.5 The moving trihedron.
Note changes to Mortenson's figure 12.5.

Curvature

- Radius of curvature is ρ_{i} and curvature at point \mathbf{p}_{i} on a curve is:

$$
\kappa_{i}=\frac{1}{\rho_{i}}=\frac{\left|\mathbf{p}_{i}^{u} \times \mathbf{p}_{i}^{u u}\right|}{\left|\mathbf{p}_{i}^{u}\right|^{3}}
$$

Recall that vector $\mathbf{p}_{i}^{u u}$ lies in the osculating plane.

Curvature of a planar curve in x, y plane:

$$
\frac{1}{\rho}=\frac{d^{2} y / d x^{2}}{\left[1+(d y / d x)^{2}\right]^{3 / 2}}
$$

Figure 12.6 Curvature.
Curvature is intrinsic and does not change with a change of parameterization.

Torsion

- Torsion at \mathbf{p}_{i} is limit of ratio of angle between binormal at \mathbf{p}_{i} and binormal at neighboring point \mathbf{p}_{h} to arc-length of curve between \mathbf{p}_{h} and \mathbf{p}_{i} as \mathbf{p}_{h} approaches \mathbf{p}_{i} along the curve.
$\tau_{i}=\frac{\left[\begin{array}{lll}\mathbf{p}_{i}^{u} & \mathbf{p}_{i}^{u u} & \mathbf{p}_{i}^{u u u}\end{array}\right]}{\left|\mathbf{p}_{i}^{u} \times \mathbf{p}_{i}^{u u}\right|^{2}}=\frac{\mathbf{p}_{i}^{u} \bullet\left(\mathbf{p}_{i}^{u u} \times \mathbf{p}_{i}^{u u u}\right)}{\left|\mathbf{p}_{i}^{u} \times \mathbf{p}_{i}^{u u}\right|^{2}}$

Figure 12.7 Torsion.

Torsion is intrinsic and does not change with a change of parameterization.

Reparameterization Relationship

- Curve has G^{r} continuity if an arc-length reparameterization exists after which it has C^{r} continuity.
- This is equivalent to these 2 conditions:
- C^{r-2} continuity of curvature
$-C^{r-3}$ continuity of torsion

Local properties torsion and curvature are intrinsic and uniquely determine a curve.

Local Surface Topics

- Fundamental Forms
- Tangent Plane
- Principal Curvature
- Osculating Paraboloid

Local Properties of a Surface
 Fundamental Forms

- Given parametric surface $\mathbf{p}(u, w)$
- Form I: $\quad d \mathbf{p} \bullet d \mathbf{p}=E d u^{2}+2 F d u d w+G d w^{2}$

$$
E=\mathbf{p}^{u} \bullet \mathbf{p}^{u} \quad F=\mathbf{p}^{u} \bullet \mathbf{p}^{w} \quad G=\mathbf{p}^{w} \bullet \mathbf{p}^{w}
$$

- Form II: $-d \mathbf{p}(u, w) \bullet d \mathbf{n}(u, w)=L d u^{2}+2 M d u d w+N d w^{2}$

$$
L=\mathbf{p}^{u \omega} \bullet \mathbf{n} \quad M=\mathbf{p}^{u w} \bullet \mathbf{n} \quad N=\mathbf{p}^{w w} \bullet \mathbf{n} \quad \mathbf{n}=\frac{\mathbf{p}^{u} \times \mathbf{p}^{w}}{\left|\mathbf{p}^{u} \times \mathbf{p}^{w}\right|}
$$

- Useful for calculating arc length of a curve on a surface, surface area, curvature, etc.

Local properties first and second fundamental forms are intrinsic and uniquely determine a surface.

Local Properties of a Surface Tangent Plane

$$
\begin{aligned}
& \mathbf{p}^{u}=\partial \mathbf{p}(u, w) / \partial u \\
& \mathbf{p}^{w}=\partial \mathbf{p}(u, w) / \partial w \\
& (\mathbf{q}-\mathbf{p}) \bullet\left(\mathbf{p}^{u} \times \mathbf{p}^{w}\right)=0 \\
& \left|\begin{array}{ccc}
x-x_{i} & x_{i}^{u} & x_{i}^{w} \\
y-y_{i} & y_{i}^{u} & y_{i}^{w} \\
z-z_{i} & z_{i}^{u} & z_{i}^{w}
\end{array}\right|=0 \\
& \underbrace{}_{\mathbf{q}} \quad \underbrace{\text { components of parametric tangent }}_{\mathbf{p}\left(u_{i}, w_{i}\right)}
\end{aligned}
$$

Figure 12.9 Tangent plane.

Local Properties of a Surface Principal Curvature

- Derive curvature of all parametric curves C on parametric surface S passing through point \mathbf{p} with same tangent line l at \mathbf{p}.

Fiaure 12.10 Normal curvature.
$\kappa_{n}=\frac{L(d u / d t)^{2}+2 M(d u / d t)(d w / d t)+N(d w / d t)^{2}}{E(d u / d t)^{2}+2 F(d u / d t)(d w / d t)+G(d w / d t)^{2}}$

Local Properties of a Surface Principal Curvature (continued)

Rotating a plane around the normal changes the curvature κ_{n}.

Figure 12.11 Principal curvature.

Local Properties of a Surface Osculating Paraboloid

Second

fundamental form helps to measure distance of surface from tangent plane.

Figure 12.13 Osculating paraboloid at a point on a surface.
As q approaches p: $\quad d=f \underbrace{f\left[\frac{1}{2}\left(L d u^{2}+2 M d u d w+N d w^{2}\right)\right]}_{\text {Osculating Paraboloid }}$

Local Properties of a Surface Local Surface Characterization

source: Mortenson, p. 412-413
b) $L N-M^{2}<0$

Hyperbolic Point:
"saddle point"
$L=M=N=0$
Planar Point
(not shown)

(c)
a) $L N-M^{2}>0$

Elliptic Point: locally convex
c) $L N-M^{2}=0$
$L^{2}+M^{2}+N^{2} \neq 0$
\uparrow
typographical error?

Parabolic Point:
single line in
tangent plane along which $d=0$

